Debugging Our Computer Science Program
1

Running head: DEBUGGING OUR COMPUTER SCIENCE PROGRAM
Debugging Our Computer Science Program
Mark K. Reha

University of Phoenix

Abstract
The problem was that many college and university Computer Science graduates and Information Technology (IT) graduates are not properly prepared academically to maintain, design, and develop Enterprise class web applications. The purpose of this research proposal was to further understand the gaps in the recent Computer Science and Information Technology programs. This research took place from the perspective of corporate America and provided valuable feedback to the college and university Computer Science and Information Technology (IT) programs. What could academia learn by studying our current software development teams already working professionally in corporate software engineering and Information Technology companies? What could academia learn from our recent college and university Computer Science graduates? Could academia use this information to identify gaps and provide constructive feedback to our colleges and universities to improve the quality of our education programs? This action research project provided research data to answer these questions. Research was completed to debug our Computer Science and Information technology programs.
Table of Contents

2Abstract

Chapter I: Introduction
4
Problem Statement
4
Purpose
4
Description of Community
4
Description of Work Setting
6
Writers Role
7
Chapter II: Study of the Problem
9
Problem Description
9
Problem Documentation
10
Literature Review
13
Causative Analysis
21
Chapter III: Outcome and Analysis
24
Goals and Expectations
24
Expected Outcomes
25
Measurement of Outcomes
25
Analysis of Results
26
Chapter IV: Solution Strategy
28
Statement of Problem
28
Discussion
28
Selected Solutions
30
Chapter V: Results and Recommendations
33
Results
33
Discussion
39
Recommendations and Plans for Dissemination
41
References
47
Appendix A: University Computer Science Program Analysis
50
Appendix B: Survey Questions – Core Web Application Design and Development Skills
53
Appendix C: Survey Questions– Maintaining Software Skills and Tools
56
Appendix D: Interview - Software Development Team Member Questions
59
Appendix E: Web Application Design Class Curriculum
68
Appendix F: Implementation Plan
69

Chapter I: Introduction

Problem Statement

The problem was that many college and university Computer Science graduates and Information Technology (IT) graduates are not properly prepared academically to maintain, design, and develop Enterprise class web applications.
Purpose

The purpose of this research proposal was to further understand the gaps in the recent Computer Science and Information Technology programs. This research took place from the perspective of corporate America and provided valuable feedback to the college and university Computer Science and Information Technology (IT) programs.
What could academia learn by studying our current software development teams already working professionally in corporate software engineering and Information Technology companies? What could academia learn from our recent college and university Computer Science graduates? Could academia use this information to identify gaps and provide constructive feedback to our colleges and universities to improve the quality of our education programs? This action research project provided research data to help answer these questions.
Description of Community

Research was completed to identify potential gaps in the current Computer Science and Information Technology programs and use the perspective of a software development team working in corporate America in a technology company who maintain, design, and build
web-based applications to run their business.

The software development team members selected for this research project consisted of 13 software developers working professionally in a well-established 10-year-old $100M technology company located in the United States. The technology company has a total of 200 employees in the company’s corporate headquarters and has an additional 100 employees who work remotely throughout the United States. All members of the software development team reside in the United States corporate office.

The 13 software developers were responsible for maintaining, designing, and building Microsoft .NET(web applications. The software developers have an opportunity to grow into four different career paths spanning four different positions and titles within the department. The career levels range from software developer 1, software developer 2, software developer 3, and software architect. Each of the career levels has a varying degree of software design and development responsibilities. The software developer level 1 position is for developers from entry-level to 3 years of industry experience. The software developer level 2 position requires four to seven years of industry experience. The software developer level 3 position requires eight to 10 years of industry experience. The architect level requires greater than 10 years of industry experience. The profile of the software development team members consisted of three females and 10 males and the professional experience of the team ranged from three to 25 years. The team members with three to five years of industry experience made up 30% of the software development team. The team members with five to 10 years of industry experience made up 60% of the software development team. The team members with more than 10 years of industry experience made up 10% of the software development team.
The skills necessary by the development team to maintain, design, and build Microsoft .NET(web applications require experience in the following technologies: C#, .NET 3.5, SQL, HTML, JavaScript, and CSS.
Description of Work Setting

The software development team worked in a well-established 10-year-old $100M technology company in the United States. The entire team was made up of full-time salaried employees of the company. The software development team works locally in the United States corporate office but is allowed to work remotely from home two days a month. The technology company does not consider offshore development as an available development model because of licensing restrictions for some of the 3rd party software required to support the business applications.
The software development team works with the standard Microsoft .NET(development tools to maintain, design, and build Microsoft .NET(web applications. The Subversion open source framework and Microsoft Team Foundation Server are used as version control systems. Other tools leveraged by the software development team included SQL Navigator and TOAD, which are tools for working with a database. The software development team had access to the Microsoft Development Network (also referred to as MSDN), which is used to access technical resources and technical training classes.
The software development team works day-to-day under the direction of a development lead. The development lead reports to the Director of Software. The software development team works closely with the Project Management Office, Quality Assurance team, and the Information Technology team. The Director of Software is responsible for establishing training plans for the full-time employees of the software development team. The Director of Software has a minimal $10,000 annual budget for training the software development team. The Director of Software had established formal Personal Development Plans (PDP) for each of the members of the software development team. The Personal Development Plans are established annually and is used to establish a formal training plan and career plan for each member of the software development team.
Writers Role

The writer’s role in the software development team was that of a Director of Software. The responsibility of the Director of Software included acting as a hiring manager for the software development department. Additional responsibilities of the Director of Software included establishing job requirements, staffing the software development team, setting technical and strategic direction for the team, establishing software development processes within the software development department, and establishing training plans for members of the team.
The writer has more than 10 years experience building and staffing software development teams. Staffing the software development teams included hiring college graduates and developers who have one to 10 years of experience maintaining, designing, and building software. The writer worked with staffing companies, job boards, and consulting companies to assist in searching for candidates to fill open job requisitions. Once potential job candidates are found the writer is responsible for reviewing the candidates job resume, setting up the interview process, interviewing the candidates, and ultimately selecting the candidates to fill the open job requisitions.
The writer has 30 years of industry experience in software engineering and Information Technology. The 30 years of industry experience included more than 10 years in technical management, five years in enterprise architecture, and 15 years building complex applications that ranged from embedded systems, Windows(desktop applications, and Enterprise web applications. The writer has held positions as a Test Engineer, Software Engineer, Solutions Architect, Enterprise Architect, Software Engineering Manager, Application Development Manager, and Director of Software. The writer is also the co-author of five patents. The writer maintains an online presence through a detailed website as well as leveraging professional social Internet sites such as LinkedIn.
Chapter II: Study of the Problem

Problem Description
The problem was that many college and university Computer Science graduates and Information Technology (IT) graduates are not properly prepared academically to maintain, design, and develop Enterprise class web applications. Computer Science graduates and Information Technology graduates must be properly trained to maintain and build web applications.
Web applications have become predominantly used to implement almost all current desktop, business, mobile, and personal applications. The technologies used to build web applications are even used as the foundation to build applications for consumer devices, such as advanced TV set top boxes and digital TV’s. The Enterprise Java platform and the Microsoft .NET(platform are the major platforms of choice for many companies who need to build these web applications. Research was required to determine how to improve the curriculum, how to improve the hands-on programming labs, and how to better prepare Computer Science and Information Technology graduates for entry into the current workforce for companies looking to hire software developers to design and develop web applications. Additionally, this research was important because if Computer Science graduates are not qualified to design and develop Enterprise class web applications these programming positions will continue to be filled by using lower cost offshore outsource resources in countries, such as India and China.

One of the first primary responsibilities of most Computer Science and Information Technology graduates entering the professional workforce is to maintain software. Research was required to determine if the proper foundational skills are taught to maintain software in a professional environment.
Problem Documentation
Current research from the past five years to identify current gaps in the Computer Science and Information Technology programs illustrated the urgency and importance of resolving these gaps.
One of the contributing factors causing the gaps in the Computer Science program is the declining enrollment rate in the program. Declining enrollment rates have reduced the capital investments, research, and grant funds the colleges and universities receive so they can continue to make advancements in the Computer Science program. One of the contributing factors in the declining enrollments is the impact of outsourcing the United States software development positions to countries such as India and China. Hoganson in 2004 researched the impacts of the movement of technical jobs, made recommendations, and suggested a strategy to improve the Computer Science program to counteract the impact of the offshore movement. Hoganson noted that Computer Science enrollments are off nationwide, due in part to the tech downturn, and due in part to the well-publicized movement of tech jobs overseas in a global economy with instantaneous communications. Computer Science program coordinators and curriculum committees are in a quandary: the organization and content of a science education should not be dependent upon the whims of the marketplace (Hoganson, 2004). These observations suggest that IT knowledge and skills are critical to a business enterprise, and hence more difficult to successfully outsource may form the basis for positioning computer science degree programs (Hoganson, 2004). Computer Science degree programs that capitalize on these observations to prepare their graduates with knowledge in areas that tend to be critical and strategic, may mitigate some of the effect of the outsourcing movement on their graduate's job prospects and on program enrollment (Hoganson, 2004).

The following research by Bagaya in 2007 further validated the urgency and need to improve the Computer Science and Information Technology curriculum.

· New Computer Science majors have declined 32% since 2000 (Bagaya, 2007).
· Computer Science programs are now viewed as a path to unemployment versus a path to wealth (Bagaya, 2007).

· The United States now has a shortage of IT and Computer Science skills (Bagaya, 2007).
· 62% of IT workers lost jobs because of business downturn, 80% of IT workers will not stay in the profession, an increase demand of 38% for IT workers, and 41% of IT workers would not recommend this profession (Bagaya, 2007).
· The circumstances and forces behind offshore outsourcing present a challenge to the United States historical lead in high-tech innovation (Bagaya, 2007).
· University administrators need to design undergraduate courses to attract new students and retain enrolled students (Bagaya, 2007).

IT managers may think that their new hires are ill-prepared for the real-world, but many higher education professionals refuse to shoulder the blame. At its heart, the issue revolves around two questions: the expectation of a college grad's knowledge, and the old art-versus-science debate about programming that you probably had in your own dorm room when you were in school (Schindler, 2005). Companies therefore must invest in extensive additional training beyond what graduates obtain as part of their college education programs. Most four-year programs still are trying to turn out Computer Science graduates who are prepared to move into any part of the field, or to go on to a research-oriented graduate program (Ward, 2010). Perhaps, said Ward that is not realistic. The Computer Science field is starting to fission into several separate specializations, much as engineering has. "We're seeing more schools offering 'tracks' of upper-division electives that allow students to gain some additional depth in one part of the field at the expense of others, and we're seeing more students turn to non-thesis masters degrees for additional specialization. We are also starting to see more specific four-year programs, such as software engineering degrees." There is also more emphasis on real-world skills in the generalist education (Schindler, 2005).
Software development companies or the graduates themselves must make a large initial investment in college graduates to compensate for the skills the graduates did not obtain in their Computer Science and Information Technology program. Enysnch Corporation, a premier IT consulting company in the United States, recently has started a new training program within the company. The company hires new Computer Science and Information Technology program graduates and trains them internally with their own curriculum. This is necessary because the graduates are not prepared to maintain, design, or build web applications. It is estimated that three to six man months of focused technical training is required by Ensynch to prepare the graduates to work in the industry. Ensynch makes an additional $25,000 investment in each graduate beyond what the graduate has already spent on a college or university degree. Other forms of training are available to Computer Science and Information Technology program graduates who wish to augment the skills they received in their college programs. For example, Oracle Corporation offers training and certification classes in the Enterprise Java platform. These certification classes generally cost over $1,000. Many of the foundational technical training classes offered by Ensynch or Oracle could be offered as part of a refreshed Computer Science and Information Technology curriculum.
Research was completed to identify the gaps in the Computer Science and Information Technology programs. A number of forms of documentation were used to identify the skills required when hiring new software developers who would be responsible for maintaining, designing, and building web applications. This inventory of skills obtained from the documentation sources were compared and contrasted to the current technologies, standards, and platform trends that have been used in the industry over the past five years to build Enterprise web applications. Other forms of documentation researched included the evaluation of resumes, job boards, research industry trade journals, blogs, and Internet sites used to monitor industry trends. By researching the current college and university programs the writer could assemble an inventory of the technologies, standards, and platforms taught in these programs. This inventory was compared and contrasted to the current technologies, standards, and platform trends used in the industry between 2005-2010 to build Enterprise web applications.
Additional research data was obtained by researching current development teams in the software development industry. What could academia learn by studying our current software development teams already working professionally in corporate software engineering and information technology companies? What could academia learn from our recent college and university Computer Science and Information Technology graduates? Could academia use this information to identify gaps and provide constructive feedback to our colleges and universities to improve the quality of our education programs? This action research project provided research data to answer these questions.
Literature Review
The importance, validation, and urgency of the problem statement were discovered in many literature resources. The following literature review summarizes the important research discoveries relevant to the problem statement. This research was conducted within the last five years.
Research shows that one of the major issues in the United States is the declining enrollment for new students in Computer Science and Information Technology programs. To make matters worse the supply for these skills in the workforce is on a rapid increase. The United States has a supply and demand problem for Computer Science and Information Technology resources. “Headlines about soaring oil prices and the iPhone's introduction signal that even more jobs will be created in such areas as alternative energy, online networking, and mobile technology, say recruiters. In response to rising gasoline prices, companies offering alternative-energy solutions are sprouting up, creating a need for workers with backgrounds in fields ranging from Marketing to Computer Science. Last year, search assignments for these types of companies accounted for 15% of some firm's business and it is expected to climb to 25% in 2008” (Needleman, 2007, p. 1). Unfortunately, the United States now has a shortage of Computer Science and IT skills and new Computer Science majors have declined 32% since 2000 (Bagaya, 2007). University administrators will need to design undergraduate courses to attract new students and retain enrolled students (Bagaya, 2007). “Undergraduate programs in IS (now referred to as IT) and Computer Science are struggling to keep pace with warp-speed technological and business changes. Many schools are lagging and widening the distance between buyers and suppliers of new IT talent. IT managers and recruiters say the disconnect has driven up training budgets, forced many companies to stop hiring new graduates, fueled outsourcing, and cost untold amounts in dollars and lost productivity as a result of mistakes by poorly trained IT workers” (Maglitta, 1996, p. 1).
One of the important factors that should be considered in Computer Science and Information Technology programs is to make sure the curriculum is aligned with the web programming platforms and programming languages currently used in the industry. It is important that Computer Science and Information Technology programs offer classes in Microsoft .NET(and Java platforms as well as offer programming classes in Java and C#. Ivan Kedrin from NY CTO, who is an online web technologist, reports that more than 75% of job trends in 2011 demand the Enterprise Java platform or the Microsoft .NET(platform. The Microsoft .NET(and Java platforms, as shown in the figure 1 below, are the most sought after general software development technology stacks. Microsoft .NET(currently represents about 3.5% of all job openings, while Java is around 3% of all job openings. These numbers are inflated by non-web application development jobs. The respective percentages that represent web application development done using both platforms should be significantly lower. Kedrin would not be surprised if less than 40% of total Java and Microsoft .NET development were web application development related, while the rest would fall into the client/server/other categories (Kedrin, 2011). Research from LangPop.org, as shown in figure 2 below, reports that Java and C# are among the top programming languages used in the industry. Initial research in 2010 from three of the top Computer Science programs in the United States, as reported by the GRE College Guide, shows that only a minimal number of classes ranging from program and development, Java, and C++ are offered as part of the program. Using information published from Gartner, a renowned technology research company, showed the following technology trends from 2006-2011. The information from Gartner provided further insight into the technologies that should be considered in current Computer Science and Information Technology programs.

a. 2006: Web 2.0 that includes AJAX and mash-ups, real-world web that includes location aware technologies, and application architecture that includes model-driven architecture.

b. 2007: Real-world web, virtual worlds and social networks, user interface enhancements, and mobile robots.

c. 2008: Virtualization, Cloud computing, servers-beyond blades, web-oriented architectures, Enterprise mash-ups, specialized systems, social software, social networking, unified communications, business intelligence, Green IT.

d. 2009: Virtualization, business intelligence, cloud-computing, Green IT, unified communications, social software, social networking, web-oriented architecture, Enterprise mash-ups, specialized systems, servers – beyond blades.

e. 2010: Cloud computing, advanced analytics, client computing, Green IT, reshaping the Data Center, social computing, security – activity monitoring, flash memory, virtualization for availability, mobile applications.

f. 2011: Cloud computing, mobile applications and media tablets, social communications and collaboration, video, next generation analytics, social analytics, context-aware computing, storage class memory, ubiquitous computing, fabric-based infrastructure, and fabric-based computers.

Figure 1. Job Trends in 2011
[image: image1.png]Job Trends from Indeed.com
—Python — PHP — JAVA — J2EE — NET -~ C# — ASP — Perl — ColdFusion
— Ruby

N

Percentage of Matching Job Postings

Jan'06 Jan'07 Jan'0 Jan'0s Jan'10 Jan'11

Figure 2. Programming Language Popularity
[image: image2.png]|
Javal

Cit

PHP)
Javascript|
Python|

=

perl|

sqU|

Ruby|

shell
Visual Basic|
Assembly|
Actionscript|
Objective C}
Lisp|

Delphi|
pascal
Scheme|
Haskell

el

Fortran
Ada|

Lual
ColdFusion
Cobol|
Erlang

D|

Scala)

Smalltalk|
ocami|

Forth)

Rexx|

0.20 0.40 0.60

0.80

Research conducted in 2010 across eight Fortune 500 businesses, nine small-to-medium businesses, and two nonprofit organizations, using the results of 20 interviews that consisted of seven open-ended questions, across IT professionals, such as 6 Sigma Black Belts, Senior Project Analysts, Quality Assurance Analysts, Computer Scientists made the following recommendations.
a. Modify Computer Science curriculum to provide more emphasis on written and verbal communication skills, gathering, and eliciting customer requirements effectively (Simmons, 2010).
b. Provide the ability to be flexible and the ability to deal with varying personalities were highly emphasized (Simmons, 2010).
c. Introduce negotiation skills, time management, and cultural differences; outsource management, and information assurance trainings as some of the most notable skills in addition to a strong technical background (Simmons, 2010).

The following summarizes the research by Bagaya in 2007 and further validated the urgency and need to improve the Computer Science and Information Technology curriculum. Bagaya discovered that the United States now has a shortage of IT and Computer Science skills and that one of the contributing factors in the decline of these skills in the United States is because of the outsourcing of these jobs. Bagaya suggested that administrators of University’s need to design undergraduate courses to attract new students and retain enrolled students.
· New Computer Science majors have declined 32% since 2000 (Bagaya, 2007).
· Computer Science programs are now viewed as a path to unemployment versus a path to wealth (Bagaya, 2007).

· The United States now has a shortage of IT and Computer Science skills (Bagaya, 2007).
· 62% of IT workers lost jobs because of business downturn, 80% of IT workers will not stay in the profession, an increase demand of 38% for IT workers, and 41% of IT workers would not recommend this profession (Bagaya, 2007).
· The circumstances and forces behind offshore outsourcing present a challenge to the United States historical lead in high-tech innovation (Bagaya, 2007).
· University administrators need to design undergraduate courses to attract new students and retain enrolled students (Bagaya, 2007).

Industry leaders and editors of software development trade journals have made a number of observations, expressed concerns, and made recommendations to improve Computer Science and Information Technology programs. One of the popular software industry journals is Software Development Times. This monthly journal tracks the trends, technologies, and corporations in the software development industry. Recently the Software Development Times editors asked: What are Computer Science students taught? New hire graduates are asked to write software and one of their first responsibilities includes code maintenance. Maintaining existing software is the quickest way to get up to speed, not only on the codebase itself but also on corporate coding practices. We propose a new course for all Computer Science majors. This course would be of code maintenance (SD Editorial Board, 2010). If one of the first responsibilities of new hire graduates of Computer Science and Information Technology programs is maintaining software the skills required to maintain software must be properly taught in our colleges and university’s.

Keith Ward from the MSDN Magazine, a popular technology magazine on Microsoft technology, observed the following in 2010. Ward provided a quote from a hiring manager for a technology company who claimed “I have never interviewed a candidate right out of college who I would hire. No recent graduate that I have interviewed has had sufficient understanding of real-world problems to be useful to me, at least for the salary that the interviewees’ were expecting” (Ward, 2010, p. 1). Ward went on to suggest that the industry use the power of the MSDN network to help determine if we are facing a crisis when it comes to teaching college students proper software development skills (Ward, 2010). It is evident from observations like the one from the hiring manager that changes must be considered in the curriculum in the Computer Science and Information Technology programs in the United States.

An article by Esther Schindler from the Software Development Times, a popular technology magazine, observed the following in 2005. "I seemed to be engaged in a constant battle with most of them to obtain properly documented and readable code," she said. Few would follow even the most basic guidelines. Many did not have the habit of proper code development in the first place" (Dzikovska, 2005). IT managers may think that their new hires are ill-prepared for the real world, but many higher education professionals refuse to shoulder the blame. At its heart, the issue revolves around two questions: the expectation of a college grad's knowledge (and thus your company's need to provide additional training), and the old art-versus-science debate about programming that you probably had in your own dorm room when you were in school (Schindler, 2005). Most four-year programs still are trying to turn out Computer Science graduates who are prepared to move into any part of the field, or to go on to a research-oriented graduate program (Ward, 2010). Perhaps, said Ward that is not realistic. The Computer Science field is starting to fission into several separate specializations, much as engineering has. "We're seeing more schools offering 'tracks' of upper-division electives that allow students to gain some additional depth in one part of the field at the expense of others, and we're seeing more students turn to non-thesis masters degrees for additional specialization. We are also starting to see more specific four-year programs, such as software engineering degrees." There is also more emphasis on real-world skills in the generalist education (Schindler, 2005). Schindler and Ward both believe that Computer Science graduates are not properly prepared for entry into the workforce and suggest some of the blame be placed on higher education professionals.

An article by Bob Lewis from the InfoWorld Magazine, a popular technology magazine on computer technology, observed the following in 2010. This seems to be a trend: In an effort to widen and deepen my own skill set, I have had occasion to examine computer science course material available online from a number of top-tier colleges and some from the lower rungs. In most instances, what I remember from my nearly 40-year-old computer science education still places me far ahead of what they are now teaching; I had to search elsewhere (mostly in open source offerings or even now-old, but graduate-level textbooks) for suitable material (Lewis, 2010). We have had trouble finding qualified United States job applicants who want to do the work we need done. I wonder if there is a connection (Lewis, 2010). Lewis implied that Computer Science skills being taught in top-tier colleges are not on par with what the industry requires. Lewis went on to say that he could not find qualified job applications and questioned if there was a direct relationship between the skills being taught in the colleges and the challenges he faced hired college graduates.

The literature review illustrates that industry professionals, trade journals, technical magazine editors, and researchers clearly validated and articulated the need to close the gaps in the Computer Science and Information Technology programs. It is evident after the literature review that the problem statement has supporting research and a major issue exists in the curriculum in the Computer Science and Information Technology programs. Research was completed to identify the gaps in the Computer Science and Information Technology programs.
Causative Analysis
A number of causes exist for the curriculum misalignment with the Computer Science and Information Technology programs and the needs of the software development industry.
One of the first issues discovered from the current research is the declining enrollment rate of the Computer Science and Information Technology programs in the United States. Enrollment rates are declining in part because the programs are outdated and administrators of University’s need to design undergraduate courses to attract new students and retain enrolled students. Another contributing factor to the declining enrollment rates is the influence outsourcing United States programming positions to countries such as India and China. The United States must find creative approaches to improve the Computer Science and Information Technology programs, improve enrollment rates, and reduce the dependency on outsourced programming positions. Currently the Computer Science and Information Technology programs are not an attractive option for new students.
Web applications have become predominantly used to implement almost all current desktop, business, mobile, and personal applications. The technologies used to build web applications are even used as the foundation to build applications for consumer devices, such as advanced TV set top boxes and digital TV’s. The Enterprise Java platform and the Microsoft .NET(platform are the major platforms of choice for many companies who need to build these web applications. More than 75% of job trends in 2011 demand the Enterprise Java platform or the Microsoft .NET(platform. The Microsoft .NET and Java platforms are the most sought after general software development technology stacks. Microsoft .NET currently represents about 3.5% of all job openings, while Java is around 3% of all job openings. Initial research in 2010 from three of the top Computer Science programs in the United States, as reported by the GRE College Guide, shows that only a minimal number of classes ranging from program and development, Java, and C++ are offered as part of the program. The Computer Science and Information Technology programs must include introduction and advanced classes for both the Microsoft .NET and the Java platforms to meet the needs of the industry. Gartner, a renowned technology research company, showed the technology trends from 2006-2010 do not align with the technologies being taught as part of the Computer Science and Information Technology programs.
Other factors also contributed to the misalignment between the curriculum in the Computer Science and Information Technology programs and needs of the software development industry. The Computer Science and Information Technology industry is moving at a much faster pace than the pace of the curriculum updates in college and university Computer Science programs. The college and university professors are not adequately teaching the core fundamental and foundational programming principles required to maintain, design, and build web applications using the Enterprise Java platform or the Microsoft .NET(platform. The skills and the experience of the college and university professors are not aligned properly with the technologies used in the industry.

It is evident after the problem documentation and literature review that the problem statement has supporting research and a major issue exists in the curriculum in the Computer Science and Information Technology programs. Research was completed to identify the gaps in the Computer Science and Information Technology programs.
Chapter III: Outcome and Analysis
Goals and Expectations
The goals of this research project were to provide recommendations that need to be made to the Computer Science and Information Technology curriculum and improvements that can be made to hands-on labs, as it relates to maintaining, designing, and developing Enterprise class web applications. The research identified gaps between the existing curriculum and the software development industry. Resolving these gaps in college and university Computer Science and Information Technology programs will enable graduates to become better prepared for entry-level programming positions and be more proficient at maintaining, designing, and building simple N-tier Enterprise class web application. This action research project documented the specific recommendations required to improve our Computer Science and Information Technology bachelor and graduate programs.

The University’s benefited in a number of ways from the results of this action research project. The University’s will be more competitive with a modern and exciting Computer Science program will be better aligned with the needs of the current software development industry. The University’s curriculum, classes, and labs were also improved. The University’s graduates benefited because they will be more competitive in the job marketplace and be better prepared for entry-level programming positions. The University’s professors benefited because they discovered skills and technical gaps in their teachings required to improve their curriculum. And finally, the corporations hiring Computer Science and Information Technology graduates benefited because they can hire United States college graduates rather than filling these positions with lower cost offshore outsourcing resources from countries, such as India and China.
Expected Outcomes
The goals of the research were to identify specific changes that could be made to the curriculum to improve the skills in the areas in software development teams responsible for maintaining, designing, and building Enterprise web applications. These goals were achieved by aligning the curriculum of the classes closer to technology used in the industry, promoted more hands-on labs, and improved the readiness of the students for the industry. These additional classes will also improve the attractiveness of the Computer Science program to potential future students to increase enrollment rates.
The research data from this project justified the recommendation of at least six additional hands-on labs that could be taken during the last two semesters of the Computer Science and Information Technology program. When a college or university implements the recommendations from this research their Computer Science or Information Technology program will differentiate their program from at least 80% of the top five University Computer Science programs in the United States.
Measurement of Outcomes
Both quantitative and qualitative research data was used in the action research project. Quantitative research data was obtained by analyzing the classes being offered in the current bachelor and graduate Computer Science and Information Technology programs from the top five universities in the United States. Resources for obtaining this research data and the analysis of the research data can be found in Appendix A. The technologies and skills being taught in the Computer Science and Information Technology programs were matched and compared against the essential technology training and skills required by the software development industry. To identify the technologies and skills required by the software development industry and quantify the readiness of the Computer Science and Information Technology graduate a series of two surveys and an interview were completed with the members of a software development team working in corporate America. The survey data provided concrete quantitative research data and the interview data provided the important qualitative research data. The survey and interview questions along with the research analysis can be found in Appendix B, Appendix C, and Appendix D.

The results of the university Computer Science and Information Technology program research along with the surveys and interviews were used to obtain research data that was used to identify curriculum gaps in the Computer Science and Information Technology programs. The results of the research were used to compare the current state of the Computer Science and Information Technology programs with the desired future state required by the software development industry. The analysis was used to identify gaps between the Computer Science and Information Technology curriculum, hands-on programming labs, and the technology training and skills required to design and build Enterprise class web applications in the software development industry.
Analysis of Results

An advanced Enterprise web application maintenance, design, and development program needs to be put in place by community colleges or University’s Computer Science program. A search of the top bachelor and masters Computer Science programs showed that only introductory Enterprise web application programming classes are available for students.

As suggested by the Editorial Board of Software Development Times, a popular technical magazine that tracks current software development technologies and trends, they propose a new course for all Computer Science majors and that course would be of code maintenance (SD Editorial Board, 2010). A recent small survey was completed by the author with recent Computer Science and Information Technology graduates and found that these graduates had to obtain the required introductory industry knowledge either by working three to five years in the industry or by taking expensive certification classes. A bulk of this knowledge obtained after post graduation can be taught today in our Computer Science and Information Technology programs. Advanced programming topics in the college catalog need to include the proper instruction on the design of N-Layer web applications along with industry best practices.
Chapter IV: Solution Strategy
Statement of Problem
The problem was that many college and university Computer Science graduates and Information Technology (IT) graduates are not properly prepared academically to maintain, design, and develop Enterprise class web applications. Computer Science graduates and Information Technology graduates must be properly trained to maintain and build web applications.
Discussion
The United States now has a shortage of IT and Computer Science skills (Bagaya, 2007). University administrators need to design undergraduate and graduate courses to attract new students and retain enrolled students (Bagaya, 2007). The current research shows that an issue in the United States is the declining enrollment rate of the Computer Science and Information Technology programs. Enrollment rates are declining in part because the programs are outdated and administrators of University’s need to design undergraduate courses to attract new students and retain enrolled students. Another contributing factor to the declining enrollment rates is the influence outsourcing United States programming positions to countries such as India and China. The United States must find creative approached to improving the Computer Science and Information Technology programs, improve enrollment rates, and reduce the dependency on outsourced programming positions. Currently the Computer Science and Information Technology programs are not an attractive option for new students.

Web applications have become predominantly used to implement almost all current desktop, business, mobile, and personal applications. The technologies used to build web applications are even used as the foundation to build applications for consumer devices, such as advanced TV set top boxes and digital TV’s. The Enterprise Java platform and the Microsoft .NET(platform are the major platforms of choice for many companies who need to build these web applications. Research is required to determine how to improve the curriculum, how to improve the hands-on programming labs, and better prepare Computer Science and Information Technology graduates for entry into the current workforce for companies looking to hire software developers to design and develop web applications. Additionally, this research is important because if Computer Science graduates are not qualified to design and develop Enterprise class web applications these programming positions will continue to be filled by using low-cost offshore outsource resources in countries, such as India and China.
Industry leaders and editors of industry trade journals have made a number of observations, expressed concerns, and made recommendations to improve Computer Science and Information Technology programs. One of the popular software industry journals is Software Development Times. This monthly journal tracks the trends, technologies, and corporations in the software development industry. Recently the Software Development Times editors asked: What are Computer Science students taught? New hire graduates are asked to write software and one of their first responsibilities includes code maintenance. Maintaining existing software is the quickest way to get up to speed, not only on the codebase itself but also on corporate coding practices. We propose a new course for all Computer Science majors. This course would be of code maintenance (SD Editorial Board, 2010). If one of the first responsibilities of new hire graduates of Computer Science and Information Technology programs is maintaining software the skills required to maintain software must be properly taught in our colleges and university’s.

More than 75% of job trends in 2011 demand the Enterprise Java platform or the Microsoft .NET(platform. The Microsoft .NET and Java platforms are the most sought after general software development technology stacks. Both the Microsoft .NET and Java platforms need to be included in Computer Science and the Information Technology programs to properly support the needs of the software industry.

The Computer Science and the Information Technology curriculum needs to be refreshed, updated, and aligned with the needs of the software industry. The Computer Science and the Information Technology curriculum will need to be updated to include a course on maintaining software. The Computer Science and the Information Technology curriculum will need to be updated to include an Enterprise web application-programming track. These tracks should be offered in either Enterprise Java or Microsoft .NET(. The selection of the tracks should be provided as an option to the student. To complement the new web application-programming tracks the Computer Science curriculum will also need to include more hands-on programming labs that teach the student how to build N-tier Enterprise web applications using current technology, common design patterns, and industry standards. College and university professors also need to upgrade their skills and experience in the Enterprise Java platform and Microsoft .NET(platform.
It was evident after the problem documentation and literature review that the problem statement has supporting research and a major issue exists in the curriculum in the Computer Science and Information Technology programs. Research was completed to identify the gaps in the Computer Science and Information Technology programs.
Selected Solutions
To identify the specific gaps in the Computer Science and Information Technology programs research data was collected using the following instruments:
1. A research of the top five major universities programs in Computer Science and Information Technology programs was completed. The research assembled an inventory of the technologies, standards, and platforms being taught in these programs. This inventory was compared and contrasted to the current technologies, standards, and platform trends used in the industry between 2005-2010 to build Enterprise web applications. The results of this research data and research data gathered during analysis were populated in a table outlined in Appendix A of this research paper.
2. An anonymous survey was distributed to a current software development team in corporate America. The survey focused on determining the experience of the team in the core technical domains used to design and build Enterprise web applications. The survey was used to take inventory of the developer’s skills and capabilities that they were taught to design and build Enterprise web applications as well as to use this inventory of skills to identify the potential gaps in the Computer Science and Information Technology programs. The questions for this survey and research data gathered during this survey are provided in Appendix B of this research paper.
3. An anonymous survey was distributed to a current software development team in corporate America. The survey focused on determining the experience in the team on the basic skills required to maintain Enterprise web applications. The survey was used to take inventory of the developer’s skills and capabilities that they were taught to maintain Enterprise web applications as well as to use this inventory of skills to identify the potential gaps in the Computer Science and Information Technology programs. The questions for this survey and research data gathered during this survey are provided in Appendix C of this research paper.
4. An interview was completed with five software developers in corporate America. The interview focused on the classes they received in a college or university Computer Science program and Information Technology program and how these classes related to the skills required for their first professional programming position. The interview also sought out recommendations from the recent college graduates on what could be done to improve university Computer Science program and Information Technology program. The questions for this interview and research data gathered during this interview are provided in Appendix D of this research paper.

In addition to the above research the author gave a condensed 12-hour Web Application Design 101 course to a software development team. The course curriculum is outlined in Appendix E of this research paper. After completing the web application design class the students could model and design a web application leveraging either the Enterprise Java and Microsoft .NET(platforms. The students were introduced to industry best practices, technology frameworks, and learn a proven industry design methodology. Once the class was completed the software development team were interviewed to see if the class would be appropriate for a Computer Science program. These interview questions were used to provide research data to identify any of the gaps in a Computer Science program or Information Technology program. The questions for this interview and research data gathered during this interview are provided in Appendix D of this research paper.
The selected solutions were completed over a three-month timeline, required the writer and previously identified software development team as resources, and cost an estimated $25,000 to implement. The detailed implementation plan is included in Appendix F of this research paper.
Chapter V: Results and Recommendations

Results

The problem was that many college and university Computer Science graduates and Information Technology (IT) graduates are not properly prepared academically to maintain, design, and develop Enterprise class web applications. Computer Science graduates and Information Technology graduates must be properly trained to maintain and build web applications. The goals of the research were to identify specific changes that could be made to the curriculum to improve the skills in the areas in software development teams responsible for maintaining, designing, and building Enterprise web applications. Upon completion of the action research project at least six additional hands-on labs that could be taken during the last two semesters of the Computer Science and Information Technology program were recommended. When a college or university implements the recommendations from this research their Computer Science or Information Technology program will differentiate their program from at least 80% of the top five University Computer Science programs in the United States.

The instruments used to gather research data for the action research project consisted of analyzing the top five major universities Computer Science and Information Technology programs, conducting two surveys on the skills and technologies used to design, build, and maintain web applications, and conducting an interview with members of a software development team. The following paragraphs document the results of the research data and analysis that was conducted from the selected solutions.
The first research data gathered for analysis was to research the top five major universities Computer Science and Information Technology programs as identified from the GRE College Guide. The research data was completed to assemble an inventory of classes appropriate for web application design and development that were available from the top five university Computer Science and Information Technology programs in the United States. The top five universities analyzed were Stanford University, Massachusetts Institute of Technology, University of California – Berkeley, Carnegie Mellon University, and Cornell University. The research data from this analysis is documented in Appendix A of this research paper. The following observations and gaps discovered from the analysis included:
· 100% of the universities taught a basic course in the Java programming language. However, none of the universities taught a class in the C# programming language used within the Microsoft .NET(platform.
· 60% of the universities taught a basic web-programming course using the Enterprise Java platform. However, none of the universities taught the Microsoft .NET(platform.

· 0% of the universities taught a course on software maintenance.
· 0% of the universities taught a course on the software development lifecycle (SDLC).

· 20% of the universities taught a course on web application design.
· 20% of the universities taught a course on building applications for a mobile platform.
Research data was gathered for analysis by conducting a survey with members of a software development team to identify gaps in skills required to design and build modern Enterprise web applications. The survey asked each software development team member to rate his or her experience in a number of technical areas using a Likert scale. The anonymous survey was conducted via e-mail. The research data from this analysis is documented in Appendix B of this research paper. The following observations and gaps discovered from the analysis included:

· The team had very little knowledge in software architecture and software design.
· The team had good knowledge of the Microsoft .NET(platform.

· The team had good knowledge of web technologies that included CSS, JavaScript, and AJAX.

· The team had very little knowledge of the MVC design pattern.

· The team had very little knowledge of web services and integration technologies.

· The team had good knowledge of database technologies that included SQL, ADO.NET, and PL/SQL.

· The team had very good knowledge of the C# programming language but had very little knowledge of the Java programming language.

Research data was gathered for analysis by conducting a survey with members of a software development team to identify gaps in skills required to maintain modern Enterprise web applications. The survey asked each software development team member to rate his or her experience in a number of technical areas using a Likert scale. The anonymous survey was conducted via e-mail using an online survey. The research data from this analysis is documented in Appendix C of this research paper. The following observations and gaps discovered from the analysis included:
· A large majority (88%) of the population surveyed believed they learned the skills necessary to understand the SDLC process.
· A majority (67%) of the population surveyed did not learn how to apply requirements analysis when maintaining software.
· A large majority (55%-78%) of the population surveyed did not learn the skills to use the tools (debugger and profiler) required to maintain software (especially profiling).
· A majority (67%) of the population surveyed understood the concepts of a version control system.
· Over half of the population surveyed (56%) did not acquire the skills to add new features and document code required to maintain software.
· Almost half of the population surveyed (44%) did not acquire the skills required to give design and code reviews.
· A majority of the population surveyed (78%) believed they were prepared in college with the proper skills to enter the workforce to maintain software.
Research data was gathered for analysis by conducting an interview with members from a software development team to identify gaps in skills required to maintain modern Enterprise web applications. The population of the software development team included 20% community college graduates and 80% major state university graduates, 20% graduated during 1992-1998 and 80% graduated during 2001-2010, 40% received a BSCS, 40% received a BSCIS, and 20% received a BSET. A face-to-face interview was conducted with selected members of a software development team. The research data from this analysis is documented in Appendix D of this research paper. The following observations and gaps discovered from the analysis included:
· Internships should be mandatory. None of the technologies used in the internships were taught in school nor were the technologies ever mentioned (even in their senior year of college). This suggests that the Computer Science program was not aligned with the industry and was too far behind the industry.

· 100% of the interviewees’ maintained applications and 80% of the interviewees’ maintained web applications as part of their responsibilities of their first job after graduating from their program. However, none of the interviewees’ was taught the skills to maintain software in their college or university studies.
· The interviewees’ were taught basic object orientated skills, basic data structures, assembly language, Java, and database tables. Only one interviewee was taught .NET 4.0 problem analysis, C#, and had the opportunity to take an introduction to web application design class that included HTML, CSS, JavaScript, AJAX, and XML.
· The interviewees’ believed there was too much theory and not enough practical knowledge taught using real-world projects. Some classes such as artificial intelligence and compiler design were a waste of time and not relevant for their careers.
· The interviewees’ believe there was not enough practical knowledge taught on how to maintain software or the software development lifecycle (SDLC) process.

· The interviewees’ believe they should have been forced to use UML. One interviewee completed a web application class but the class only introduced the student briefly to the MVC design pattern. The interviewees’ believed there were too much theory and not enough coding. One interviewee was being taught the Pascal programming language when the industry was using C/C++.
· Some of the classes were taught online. The interviewee believed that an online classroom was not an effective environment to teach programming classes. Some classes even taught bad programming principles.
· 80% of the interviewees’ said their programs were simply outdated and not aligned with the skills they needed for their first programming position.

· 80% of the interviewees’ said their programs did not adequately prepare them to maintain, design, and program web applications. The programs were simply outdated and not aligned with the skills were required to maintain software. 60% of interviewees’ said that more hands-on labs are needed in the classroom.
· 100% of the interviewee’s said that the web application design class they were taught (in Appendix D of this research paper) in their job should be added to the curriculum and taught in a Computer Science or Information Technology program.

· The interviewees’ made the following recommendations to improve the Computer Science and Information Technology programs:
1. Minimize some of the elective classes (history, physiology, physics I and II, Calculus I, II, and III, Religions, etc.).

2. More group projects need to be added to the program. The projects should be aligned to a real-world scenario and development process.

3. Standardize on tools and use the same tools used in the industry. Leverage the free tools offered by Microsoft for the .NET platform.

4. Teach the importance of code maintenance and performance.

5. Teach more web application programming classes.
6. Hire professors who have more real-world experience and are not outdated. Also bring industry experts into the classroom.

· The interviewees’ made the following recommendations to technology companies:
1. Add more formal training programs.

2. Promote the Microsoft Developer Network (MSDN).

3. Offer tuition reimbursement programs.

4. Be more proactive in internship programs.
The research data provided valuable insight into the curriculum of the current Computer Science and Information Technology programs. Valuable feedback was obtained from the survey data and interview data. This research data provided the information required to make specific recommendations to the Computer Science and Information Technology programs that could be used to easily improve the programs.
Discussion

The results of the research data and analysis clearly showed the top universities Computer Science and Information Technology programs in the United States are not aligned with the needs of the industry when preparing students to maintain, design, and build of web- applications. By far Stanford University provided the most progressive Computer Science program and even offered a mobile platform tracks that included classes in programming the iPhone and Android platforms. Ivan Kedrin from NY CTO, who is an online web technologist, reports that more than 75% of job trends in 2011 demand the Enterprise Java platform or the Microsoft .NET(platform. The Microsoft .NET(and Java platforms, as shown in figure 1, are the most sought after general software development technology stacks. Microsoft .NET(currently represents about 3.5% of all job openings, while Java is around 3% of all job openings. None of the top universities in the United States are even teaching the C# programming language or the Microsoft .NET(platforms. None of the universities taught a course on software maintenance but yet this is one of the first primary responsibilities of a majority of Computer Science and Information Technology graduates. This gap must be resolved to properly prepare the graduates for their first job in the industry. None of the universities taught a course on the software development lifecycle (SDLC). This gap must be resolved to enable the graduates to properly understand the process used to design, build, test, and release software into the market. Web applications have become predominantly used to implement almost all current desktop, business, mobile, and personal applications. The technologies used to build web applications are even used as the foundation to build applications for consumer devices, such as advanced TV set top boxes and digital TV’s. However, the research data showed that only 20% of the universities taught a course on web application design. These major gaps in the programs require the student or the industry to pick up the cost of training the student to fill in this major gap in the Computer Science and Information Technology program.
The surveys and interview conducted with the software development team yielded a number of surprising results. The interviewees’ suggested that too much theory and not enough practical knowledge using real-world projects were taught in their programs. Some classes such as artificial intelligence and compiler design were a waste of time and not relevant for their careers. 80% of the interviewees’ said their programs were simply outdated and not aligned with the skills required for their first programming position. The programs were simply outdated and not aligned with the skills required to maintain software and 60% of interviewees’ said that more hands-on labs are needed in the classroom. The Computer Science and Information Technology program must be updated, refreshed, and aligned with the needs of the industry.
The research data from surveys and interview conducted with the software development team showed that there was not enough practical knowledge taught on how to maintain software or the software development lifecycle (SDLC) process. 100% of the interviewees’ indicated they were responsible for maintaining software applications. 80% of the interviewees’ indicated they were responsible for maintaining web applications. However, none of the interviewees’ was taught the skills to maintain software in their college or university studies. A large majority (55%-78%) of the population surveyed did not learn the skills to use the tools (debugger and profiler) required to maintain software. A majority (67%) of the population surveyed understood the concepts of a version control system. Over half of the population surveyed (56%) did not acquire the skills to add new features and document code required to maintain software. Almost half of the population surveyed (44%) did not acquire the skills required to give design and code reviews. These gaps must be resolved to properly prepare the graduates for their first job in the industry and prepare them to properly maintain software.

The research data from surveys and interview conducted with the software development team showed that the Computer Science and Information Technology programs lacked the proper classes in web application design and development. 80% of the interviewees’ said their programs did not adequately prepare them to maintain, design, and program web applications. 100% of the interviewees’ indicated that the web application design class they were taught (in Appendix D of this research paper) should be added to the curriculum and taught in a Computer Science or Information Technology program.
Recommendations and Plans for Dissemination

After implementing the selected solutions and analyzing the research data obtained from research instruments a number of gaps were identified in the Computer Science or Information Technology programs. A summary of the gaps in the program included:
1. The C# programming language and the Microsoft .NET(platform was not included in the program. A basic Microsoft .NET(platform class and also an advanced Microsoft .NET(platform class must be added to the program.

2. The program only included classes on the basic Java EE platform. An advanced Java EE platform class must be added to the program.

3. The program did not include a class to introduce the Software Development Lifecycle (SDLC) process. A SDLC process class must be added to the program.

4. The program did not include a class on software maintenance. A software maintenance class must be added to the program.

5. The program did not include a class on general web application design. A general web application design class that includes fundamentals on N-Layered design, Unified Modeling Language (UML), requirements analysis, industry best practices, and industry design patterns must be added to the program.

To resolve the gaps identified during the analysis of the research data the following recommendations are being made to the Computer Science and Information Technology programs.
	
	Curriculum Recommendation
	Curriculum Description

	1
	Web Application Design Class
	This class would be a platform neutral class that teaches the fundamentals on N-Layered design, Unified Modeling Language (UML), requirements analysis, industry best practices, and industry design patterns. The class would also include an introduction to the Software Development Lifecycle (SDLC) process. The class would include hands-on programming labs that include requirements decomposition using a real-world business scenario and using Unified Modeling Language (UML) to model a software design. See Appendix D for course details.

	2
	Web Application Programming Track
	This programming track would be offered to students as part of a focused web application design and development track. The student would have the option to take either classes targeted to the Microsoft .NET Platform or the Enterprise Java Platform.

	2a
	 Web Application Foundation
	This class would teach the fundamentals and technologies used to build web applications. Technologies taught would include basic HTML, Cascading Style Sheets (CSS), JavaScript, and the HTTP protocol. This class would include hands-on programming labs that would build a static website using HTML, CSS, and JavaScript.

	2b
	 Microsoft .NET Platform
	This class would teach the student how to design and build dynamic web applications using the Microsoft .NET Platform. Fundamentals including ASP.NET, Windows Communication Foundation, Windows Work Flow, and Entity Framework will be taught as part of this class. Labs in the class would apply the fundamentals and learning objective taught as part of the Web Application Design Class. The hands-on programming labs included as part of this class would consist of modeling a software design using a real-world business scenario and exercise each phase of the Software Development Lifecycle (SDLC) process.

	2c
	 Enterprise Java Platform
	This class would teach the student how to design and build dynamic web applications using the Enterprise Java Platform. Fundamentals including Servlets, JavaServer Faces, Enterprise Java Beans, and Java Persistence Framework will be taught as part of this class. Labs in the class would apply the fundamentals and learning objective taught as part of the Web Application Design Class. The hands-on programming labs included as part of this class would consist of modeling a software design using a real-world business scenario and exercise each phase of the Software Development Lifecycle (SDLC) process.

	5
	Maintaining Software Class
	This class would teach the fundamentals for how to maintain software. Fundamentals taught would include using a software debugger, using a performance profiler, version control system, commenting code, and peer code reviews. The hands-on programming labs included as part of this class would consist of optimizing a piece of software, adding appropriate comments to the code, and giving a peer code review.

The general recommendations from the members of the software development team should also be considered. Computer Science and Information Technology administrators should minimize some of the elective classes (history, physiology, physics I and II, Calculus I, II, and III, Religions, etc.), add more group projects, and align the projects with a real-world scenario and development process. Just as important is to ensure that administrators hire professors who have more real-world experience and are not outdated.
A hiring manager made the following quote. “I have never interviewed a candidate right out of college who I would hire. No recent graduate that I have interviewed has had sufficient understanding of real-world problems to be useful to me, at least for the salary that the interviewees’ were expecting” (Ward, 2010, p. 1). The before mentioned quote from a hiring manager in the industry should be motivation enough for college and university Computer Science and Information Technology administrators to take notice in the effectiveness of his or her programs.
Research to improve our Computer Science and Information Technology programs should not stop here. The results of this research paper should be disseminated to academia and technical journals within the software industry. Two technical journals worthy of consideration would include ACM and IEEE. The Association for Computing Machinery (ACM) organization is the world’s largest educational and scientific computing society and delivers resources to advance computing as a science and a profession. The IEEE organization is the world’s largest professional association dedicated to advancing technological innovation and excellence for the benefit of humanity. The writer Reha (2011) “will give consideration to submitting this research paper for peer review at the Association for Computing Machinery (ACM) organization and the IEEE organization” (Action Research Project - Publication Standards Activity, para. 1).
Other social media and technical media resources should also be considered to disseminate the results of this research paper. Resources such as social sites like LinkedIn and Google+, blogs such as Java Site, and industry trade journals such as MSDN and SD Times will also be used to publish this research data. More important this research data must be distributed to administrators of the top colleges and universities in the United States. Additional research should also be funded to analyze other programs, such as Electrical Engineering, in the United States to ensure we are teaching our college and university students the skills required to be competitive in the global market.
The United States must find new and creative approaches as well as fund additional research to improve the Computer Science and Information Technology programs, improve enrollment rates, and reduce the dependency on outsourced programming positions. Currently the Computer Science and Information Technology programs are not an attractive option for new students. Implementing the recommendations and improvements to the curriculum as suggested in this research paper will result in improving 100% of the top five universities identified in this research paper. Implementing the recommendations and improvements as suggested in this research paper will result in a Computer Science and the Information Technology curriculum that will be refreshed, updated, and aligned with the needs of the software industry.
References

ACM. (2011). Association for Computing Machinery. Retrieved from http://www.acm.org/
Bagaya, Martin H.. (2007). An Analysis of IT/IS Offshore Outsourcing: Educator
Perspectives. Nova Southeastern University. 2007.

Retrieved June 27, 2009 from ProQuest database.
Ensynch Corporation. (2011). Ensynch Home Page.

Retrieved July1, 2011 from http://www.ensynch.com
GRE Guide. (2009, June 27). GRE College Guide.

Retrieved June 27, 2009 from

http://www.greguide.com/comps.html
Hoganson, K. (2004). Computer Science Curricula In A Global Competitive

Environment. Consortium for Computing Sciences in
Colleges, Retrieved June 1, 2011 from ProQuest database.

IEEE. (2011). IEEE - The world's largest professional association for the advancement of
technology. Retrieved from http://www.ieee.org/
Java Programming Training - Sun Microsystems Classes. (2009, June 27).

Retrieved June 27, 2009 from

http://www.exitcertified.com/training-class/java-training-sun-microsystems.html
Kedrin, Ivan. (2011). NY CTO: Web Application Development Technology
Demand Trends & Predictions. Retrieved July 7, 2011 from

http://nyccto.wordpress.com/2010/04/19/web-application-development-
technology-demand-trends-predictions/
LangPop.com. (2001). Programming Language Popularity.

Retrieved July 1, 2011 from http://langpop.com/
Lewis, B. (, May 2010). The Sad Standards of Computer-related College Degrees.

InfoWorld. Retrieved from http://www.infoworld.com/d/adventures-in-it/the-sad-
standards-computer-related-college-degrees-202#talkback

Maglitta, Joseph. (1996). IS schools: Need improvement. Computerworld. Framingham:
Feb 19, 1996. Vol. 30, Iss. 8; pg. 78, 4 pgs. Retrieved June 27, 2009 from ProQuest database.

Microsoft Corporation. (2011). Microsoft .NET Framework.
Retrieved July 1, 2011 from http://www.microsoft.com/net/
Microsoft Corporation. (2011). MSDN.
Retrieved July 1, 2011 from http://msdn.microsoft.com
Needleman, Sarah E. (2007). What Major '07 Headlines Say About '08 Job Market;
Alternative Energy, Web Developing, Risk Analysis Are Hot; Airlines, Home
Lending Are Not. Wall Street Journal. (Eastern edition). New York, N.Y.: Dec 11, 2007. pg. B.12 Retrieved June 27, 2009 from ProQuest database.

Oracle. (2011). Java EE At a Glance. Retrieved July 1, 2011 from
http://www.oracle.com/technetwork/java/javaee/overview/index.html
Oracle. (2011). Oracle – Java Training Course Catalog.

Retrieved June 27, 2009 from http://education.oracle.com
Reha, M. K. (2011). Online Portfolio - Masters Degree Program. On The Edge
Software. Retrieved from http://www.ontheedgesc.com/masters/

Schindler, Esther. (2005). The Truth for Computer Science Grads. Retrieved July 9, 2011

from Software Development Times http://www.union.edu/N/DS/s.php?s=5588
SD Times Editorial Board. (2010). Let’s Teach Maintenance.

Retrieved April 15, 2010 from http://www.sdtimes.com/SearchResult/34244
Simmons, Chris B. & Simmons Lakisha L.. (2010). Gaps in the computer science

curriculum: an exploratory study of industry professionals. Journal of Computing Sciences in Colleges, 25(5), Retrieved June 1, 2011 from ACM Digital Library at http://portal.acm.org

Technology Research – Gartner Inc. (n.d.) Retrieved July 9, 2011 from

Online web site: http://www.gartner.com

U.S. News and World Report. (2009, June 27). Best Graduate Schools.

Retrieved June 27, 2009 from

http://grad-schools.usnews.rankingsandreviews.com/best-graduate-schools
Ward, K. (2010, July). Over-Educated, Yet Under-Qualified?. MSDN Magazine.
Retrieved from http://msdn.microsoft.com/en-us/magazine/ff797912.aspx
Appendix A: University Computer Science Program Analysis

The following research data was completed to assemble an inventory of classes appropriate for web application design and development that were available from the top five University Computer Science and Information Technology programs in the United States.

	
	University
	Web Application Design, Mobile Technology, and Web Application Development Classes Available
	Gaps/Notes

	1
	Stanford University

ckgaa@forsythe.stanford.edu
	Core BSCS classes taught:

1. Computer Organization and Systems: C programming language down to the microprocessor.
2. Object-Oriented Systems Design: Intermediate Java and Java Swing. How the web works with Servlets, and JSP on Tomcat using Subversion.

3. Introduction to Databases: XML, SQL, some UML, constraints, views, triggers, and even NoSQL.

4. HCI Technology Laboratory: HTML, intro to CSS, PHP, JavaScript, jQuery, and even jQTouch.

5. iPhone Application Programming.

6. Android Programming.

7. Cloud Commuting.

8. Senior Project, a number of Independent Projects, and Database Project.

	Gaps:

1. No .NET was taught. Need basic .NET class and also an advanced .NET class.

2. Only the basic Java EE was taught. Need an advanced Java EE class.

3. Need SDLC process class.

4. Need Software Maintenance class.

5. Need general Web Application Design class.

Notes:

1. The most progressive Computer Science program in the top 5 University’s. Even had both iPhone and Android programming tracks.

	2
	Massachusetts Institute of Technology

mitgrad@mit.edu
	Core EECS classes taught:

1. Elements of Software Construction.
2. Create Video Games.

	Gaps:

1. No .NET was taught. Need basic .NET class and also an advanced .NET class.

2. Only the basic Java EE was taught. Need an advanced Java EE class.

3. Need SDLC process class.

4. Need Software Maintenance class.

5. Need general Web Application Design class.

6. No mobile programming track.

Notes:

1. Lots of theory and was very engineering centric.

	3
	University of California - Berkeley

gradadm@eecs.berkeley.edu
	Core EECS classes taught:

1. JAVA for Programmers and Data Structures

2. Introduction to Database Systems.

	Gaps:

1. No .NET was taught. Need basic .NET class and also an advanced .NET class.

2. No Java EE was taught. Need basic Java EE class and also an advanced Java EE class.

3. Need SDLC process class.

4. Need Software Maintenance class.

5. Need general Web Application Design class.

6. No mobile programming track.

Notes:

1. Lots of theory and was very engineering centric.

	4
	Carnegie Mellon University

apps@ece.cmu.edu
	Core BSCS classes taught:

1. Effective Programming in C and UNIX
2. Database Applications: SQL

3. Bug Catching: Automated Program Verification and Testing
4. Fundamental Data Structures.

5. Foundations of Programming Languages.

6. Introduction to Computer and Network Security and Applied Cryptography

7. Introduction to Computer Security

8. Fault-Tolerant Distributed Systems

9. Internet Services

	Gaps:

1. No .NET was taught. Need basic .NET class and also an advanced .NET class.

2. No Java EE was taught. Need basic Java EE class and also an advanced Java EE class.

3. Need SDLC process class.

4. Need Software Maintenance class.

5. Need general Web Application Design class.

6. No mobile programming track.

Notes:

1. Lots of theory and was very engineering centric.

	5
	Cornell University
http://www.engr.cornell.edu/
	Core BSCS classes taught:

1. Introduction to Computing Using Java

2. Transition to Object-Oriented Programming (using Java)

3. Introductory Design and Programming for the Web (XHTML, CSS, and PHP)

4. Introduction to Mobile Application Development

5. Object-Oriented Programming and Data Structures (in Java or C++)

6. Intermediate Design and Programming for the Web (PHP, MySQL, JavaScript, AJAX)

7. Web Information Systems (XML, XSLT)

8. Introduction to Database Systems (XML, XQUery)

9. The Architecture of Large- Scale Information Systems (N-Tier, Web Services, .NET, Java EE).
	Gaps:

1. 1 class on N-Tier web applications and mentioned web services, .NET, and Java EE.

2. Need SDLC process class.

3. Need Software Maintenance class.

4. Need general Web Application Design class.

5. No mobile programming track.

Notes:

1. Lots of theory and was very engineering centric.

2. The 2nd most progressive Computer Science program behind Stanford.

Appendix B: Survey Questions – Core Web Application Design and Development Skills

The following technical areas were studied using a survey that was used to obtain research data from a software development team to identify gaps in skills required to design and build modern Enterprise web applications. The survey asked each software development team member to rate his or her experience in each of the technical areas using a Likert scale. The survey was conducted via e-mail.
Instructions

Step 1: Please fill out each of the technologies in each of the domains listed and provide an assessment of your experience and understanding of the technology. Use the following Likert Scale to rank your skills:

1 – no knowledge at all or never heard of the technology

2 – very little knowledge (I know what the technology is but have no book or practical knowledge)

3 – some knowledge (I have some book knowledge but no practical knowledge)

4 – good knowledge (I have practical industry knowledge)

5 – expert (expert knowledge, mentor ability)

Step 2: Indicate (with a Y or N) in the far right column whether the associated technology domain is of interest to you for future projects or training.
	Technology

Domain
	Skills Assessment?

(1 none to 5 expert)
	Future Interest?

(Yes or No)

	Architecture and Design
	
	

	 Enterprise Architect
	2.18
	80%

	 Solution Architect
	2.45
	80%

	 Applications Architect
	2.73
	90%

	 Security Architect
	2.09
	90%

	 Integration Architect
	2.27
	90%

	 UML (Software Modeling)
	2.91
	80%

	 Design Patterns
	3.00
	90%

	 Reference Implementation
	1.80
	80%

	 Held Design Reviews
	2.82
	70%

	 Held Code Reviews
	2.82
	70%

	 Authored Standards
	2.45
	70%

	 Authored Best Practices
	2.36
	70%

	
	
	

	.NET Presentation
	
	

	 Classic ASP
	3.18
	20%

	 ASP .NET 3.5 (or later)
	3.36
	80%

	 .NET MVC
	2.09
	70%

	 .NET AJAX
	2.82
	60%

	 CSS
	3.36
	70%

	 JavaScript
	3.27
	70%

	 JSON
	1.91
	60%

	 XSLT
	2.55
	50%

	 jQuery
	1.64
	50%

	 Prototype.js
	1.36
	50%

	
	
	

	.NET Services/Integration
	
	

	 .NET WCF
	2.82
	70%

	 .NET WWF
	2.73
	60%

	 .NET Unity Framework
	2.09
	60%

	 C# Business Services
	1.18
	70%

	 SOAP Web Services
	1.55
	80%

	 REST Web Services
	1.91
	70%

	 Messaging (MS MQ, MQ)
	1.27
	70%

	 Rules Engine
	1.18
	70%

	 ETL Framework/Server
	1.36
	70%

	
	
	

	.NET Data Access
	
	

	 .NET ADO
	3.00
	60%

	 LINQ
	1.82
	70%

	 nHibernate (or other ORM)
	1.45
	70%

	 PL/SQL
	4.00
	80%

	 SQL
	4.00
	80%

	
	
	

	Security
	
	

	 Authentication
	3.36
	70%

	 Authorization (Roles, etc)
	2.27
	70%

	 LDAP
	2.27
	70%

	 SAML
	1.09
	60%

	 Kerberos
	1.18
	50%

	 SSL
	2.73
	70%

	 PCI Standard
	1.36
	60%

	 OWASP
	1.00
	40%

	 Web SSO (SiteMinder, etc)
	1.00
	40%

	
	
	

	SOA
	
	

	 XML
	3.00
	60%

	 XSD
	3.00
	60%

	 WS-* Web Service Standards
	1.00
	80%

	 ESB
	1.00
	50%

	 BPEL/BPEL Engine
	1.00
	40%

	
	
	

	Languages
	
	

	 C#
	3.82
	60%

	 Java
	2.73
	100%

	 Perl
	1.91
	60%

	 F#
	1.55
	40%

	 Scala
	1.36
	40%

Appendix C: Survey Questions– Maintaining Software Skills and Tools

The following survey questions were used to obtain research data from a software development team to identify gaps in skills required to maintain modern Enterprise web applications. The survey asked each software development team member to rate his or her experience in each of the technical areas using a Likert scale. The survey was conducted via an online survey.
1. I was taught the fundamentals of the processes involved in the Software Development Life Cycle.

2. I studied an existing software program and was taught how to add new features to it.

3. I was taught how to document business requirements for new features that could be added to an existing software program.

4. I was taught how to update existing software code documentation for existing software programs so my peers could easily maintain them.

5. I was taught how to use an IDE debugger for the Java, C#, or C/C++ programming languages.

6. I was taught how to use an IDE performance profiler for the Java, C#, or C/C++ programming languages.

7. I was taught the fundamentals of how to prepare, communicate, and deliver a design review with my peers.

8. I was taught the fundamentals of how to prepare, communicate, and deliver a code review with my peers.

9. I was taught the fundamentals for how to use a version control system.
10. I was prepared with the appropriate software development skills in college so once I started to work professionally as a software developer I could maintain existing software programs.
	I learned the required Software Development Processes?

	
	Strongly Agree
	Agree
	Disagree
	Strongly Disagree

	SDLC Process
	44%
	44%
	11%
	0%

	Requirements Analysis
	11%
	22%
	56%
	11%

	I learned the required skills for the programming tools?

	
	Strongly Agree
	Agree
	Disagree
	Strongly Disagree

	IDE Debugger
	11%
	33%
	33%
	22%

	IDE Profiler
	11%
	11%
	56%
	22%

	Version Control
	11%
	56%
	11%
	22%

	I learned the required skills for maintaining programs?

	
	Strongly Agree
	Agree
	Disagree
	Strongly Disagree

	Coding Fundamentals
	22%
	22%
	56%
	0%

	Coding Documentation
	0%
	44%
	56%
	0%

	Design Reviews
	22%
	33%
	33%
	11%

	Code Reviews
	22%
	33%
	33%
	11%

	I thought I was prepared in college for the workplace?

	
	Strongly Agree
	Agree
	Disagree
	Strongly Disagree

	
	11%
	67%
	11%
	11%

Appendix D: Interview - Software Development Team Member Questions
The following interview questions were used to obtain research data from a software development team to identify gaps in skills required to design and build modern Enterprise web applications. The interview with selected members of a software development team was conducted face to face.
	
	Question
	Interviewee Responses
	Gaps/Notes

	1
	What University or College did you or are you attending?
	1. Arizona State University
2. Paradise Valley Community College
3. Arizona State University
4. Arizona State University
5. New York University and University of Phoenix
	20% community college

80% major state university

	2
	What years did you attend University or College?
	1. 2001-2008
2. 2008-2011

3. 1992-1998
4. 2002-2004
5. New York University - 1995 to 2000 and University of Phoenix - 2008 to 2010
	20% during 1992-1998
80% during 2001-2010

	3
	What major did you receive or are you working on?
	1. Bachelors in Computer Science
2. Bachelors in Computer Information Systems
3. Bachelors in Computer Science
4. Bachelor Computer Engineering Technology
5. Bachelors in Computer Information Systems from NYU and Bachelors in Information Technology from UOP
	40% BSCS

40% BSCIS

20% BSET

	4
	Was an internship offered to you while you were attending college? If yes, please explain what you did as an intern.
	1. Yes. Department of Transportation. Doing some basic .NET development. .NET 3.0, very basic web site to track project deliverables (used internally). Feels internships should be mandatory.

2. No.

3. Not aware of one thru university but thru industry contracts did an internship at Honeywell. Worked on creating ActiveX controls in VB6 use in a proprietary system used to monitor power generation. None of these technologies used were taught in school nor were the technologies ever mentioned (even in senior year of college).

4. No.

5. Yes, and took advantage of the internship. Did internship from 1998 to 2000. Support for Bloomberg financial system. Monitoring scheduled jobs.
	Internships should be mandatory.

None of thee technologies used in the internships were taught in school nor were the technologies ever mentioned (even in senior year of college). Implies that that the Computer Science program non aligned with the industry and too far behind the industry.

	5
	What were your responsibilities for your first programming position out of college?
	1. A little contract job for 3 months. Tiny web shop (mom and pop web site). But first real job was at Redflex Traffic Systems. Maintain and support a single C# application on .NET 3.5. He did this for the first 8 months.
Then moved to .NET development and worked on a small .NET application (was Classic ASP application).

2. Maintain .NET applications and C# based applications along with lots of PL/SQL.

3. Small department. VB6 executable for an insurance quotation system. Taking over existing code, more reliable, maintain, and some of the database maintain. Then got into web development in 2001 to take a static web site into an ASP dynamic web site.

4. Developing (both maintain and new application) web applications. Developing (both maintain and new application) Windows application.

5. Mainframe developer at AT&T for NYU. BA and QA at BofA for UoP.
	All interviewees’ maintained applications. 80% maintained web applications.

	6
	How many years have you worked professional in the industry?
	1. Almost 4 years
2. Almost 2 years

3. Almost 13 years

4. Almost 7 years

5. Almost 11 years
	2 to 13 years

	7
	What are your current responsibilities as a programmer?
	1. Very similar to what was done first year out of college (maintaining .NET applications).
2. Maintain .NET applications and C# based applications along with lots of PL/SQL.

3. Maintain existing ASP based web applications.

4. Developing (both maintain and new application) web applications.

5. QA/Software Tester.
	80% design, maintain, build web applications

20% QA

	8
	What classes from your program benefited you most and prepared you best for your first programming position?
	1. Basic Object Orientated class based on Java programming language (a second year class). Basic Electronic Processor (class on how code is executed in a processor). Senior class working in a Team (capstone class) 2 semester class where they were given a set of requirements and they generated UML uses cases, design specification, and wrote application (along with weekly presentation on status). This was a desktop application written in Java Swing. Taught some presentation skills. Took Data Structures and Algorithms (how to sort, heuristics, charting) was a good class. Took some Assembly Language that was a bit useful but not much. Took some Artificial Intelligence that was a bit useful but not much. Took some Compiler Designer that was a bit useful but not much. Took a database class (taught the basics of tables, joins) on SQL Server. Got some information on version control, SDLC basics, and source control (but some of this was learned from a TA).

2. .NET 4.0 Problem Analysis and Systems Design class (solid fundamentals such as best coding practices, every week did a project with a design that needs to be approved then code the project). Usually projects were simple (such as a time clock and payroll system), got requirements at beginning of semester, each project built on each other. Design documents could be either flow charts, pseudo code, or UML class diagrams (most used pseudo code and a few class diagrams)........design was approved by instructor. Instructor had been in the industry and was good for the classroom Touched on UML. Design class should have forced the use of UML versus giving the students a choice. Project was based on Windows Form Application (WPF). Only touched very briefly on web forms and MVC. This is covered in the Advanced class. This is the only web application design class for this entire program. In two weeks will be taking advanced .NET 4.0 Problem Analysis and Systems Design class (covers MVC, advanced C# recursive, lists, multi-threading).

3. Lots of theory and not much coding. Took a good database class. Statistics class was helpful. Curriculum was Pascal (and not C/C++!!!) and did a few very small projects in Small Talk. A small amount of Java was also introduced. Very static web application (Java applets, simple HTML tags but was taught with wrong tag structure) and was also theory and concepts.

4. Most classes were Java related. Took 1 C# class and this was the most beneficial class. Not much was based based. Took a bit of Enterprise Java. Almost all focus on Java SE and a bit of Java ME. Tini-board class that was Java based that taught how to software interact with some hardware. A class that introduced multiple languages (C, C++, VB.NET).

5. NYU: Basic programming classes and class on general computer information, C and Assembly class (no C++), no other classes. UOP: Web application programming class (Web 431 XML class), Web 404 was a class on HTML, CSS was an intro Web design and development, and Web 406 JavaScript, AJAX, Classic ASP was a Web design and development. UOP: Web 404 was an online class on HTML, CSS was an intro Web design and development and they were asked to create a basic page with no tools. Did not teach how to do properly (embedded all CSS in page). UOP: Web 406 was an online class on JavaScript, AJAX, Classic ASP was a Web design and development. There was no ASP.NET. UOP: Web 431 was an online class on XML that was very bad because they did not provide proper concept for how XML is used, why used. UOP: Above 3 classes fine for online classes. SQL for Business, Windows Server Networking, should have been done on campus.
	Basic OO, Data Structures.

Assembly Language, Java, Java Swing, Database tables, .NET 4.0 Problem Analysis, C#, intro web design at UoP (HTML, CSS, JavaScript, AJAX, XML).

Minimal UML, some design.

AI, Compiler Design.

Senior team project.

Should have been forced to use UML. Only 1 web application class with a minimal introduction to MVC. Lots of theory and not enough coding. Taught Pascal when the industry was using C/C++. Only touches on Java EE and the focus was on Java SE. UoP classes taught online and were really bad and taught bad programming principles in CSS. UoP did not teach ASP.NET in web design class.

	9
	What classes were missing from your program that would have prepared you better for your first programming position?
	1. Not enough time spent on end-to-end projects with hands on (real world). C# and .NET. Java EE. Web application technologies (HTML, HTTP protocol, CSS, JavaScript).

2. Missing background on SDLC processes, source control. Missing a bit on code maintain and need to spend more time on this topic. Feels my web application design class would be very applicable in his program.

3. Very limited to any Microsoft based technologies. Development environments were all command line and no IDE's. No Windows programming classes. Did not have a taste for the real world when left school. Lack of guidance. Some instructors not aligned with the industry. Some classes taught with grad students with many that were not qualified to teach. Lots of classes with adult students with industry experience that caused problems for younger students (adult would answer questions without input from younger students).

4. Learned a bit about the SDLC process but did not get to implement the process. More web application design and programming classes.

5. More design and architecture of web applications. Project lifecycle (SDLC) was missing. Professors do not have enough experience in real world environments. Missing how to write technical documentation (such as a Requirements document, Design document, Test Cases document).
	Not enough time on end-to-end real-world projects.

Not enough taught on .NET and Java EE. Also not enough taught on basic web technologies such as HTTP protocol, CSS, and JavaScript.

Not enough taught on SDLC process.

Professors did not have adequate real-world experience and outdated.

	10
	Do you feel your program was aligned with the current technologies used in our industry? If not, explain and give some examples.
	1. No. No web application technologies. Some classes are offered but are electives (UI thought has some basic HTML/CSS).

2. Yes, for .NET. There are tracks for Java and Java EE. There are tracks for Mobile.

3. No. Should have been Microsoft classes and Windows classes (the job market was expecting these skills). Lots of classes such as operating systems and technical writing were not aligned with the industry. Despite the exciting time (Windows 95 and the Internet) the professors brought no experience or passion into the classroom.

4. Laughed. No. First job was all .NET and Windows and only took a C# class.

5. UOP: No, way behind....see above.
	80% of the interviewees’ said no. The interviewees’ programs were simply outdated and not aligned at all with the skills they needed for their first programming position.

	11
	Do you feel your program adequately prepared you to maintain, design, and program web applications? If not, explain and give some examples.
	1. No. Would have to spend lots of time on my own to learn. Taught some fundamentals on code maintenance.

2. Yes, for .NET. Looking forward to advanced .NET class, PM, Advanced OO and Analysis Design class.

3. N/A web applications. Nothing on maintain (version control, coding standards, etc.)

4. No. Definitely not how to maintain software. Only touched on the debugger for Java.

5. UOP: No....see above.
	80% of the interviewees’ said no. The interviewees’ programs were simply outdated and not aligned at all with the skills they needed to maintain software.

	12
	Do you feel your program had enough hands on labs to adequately prepare you for your first programming position? If not, explain and give some examples.
	1. No. Very small projects and along the lines of proof of concepts. One project was on assembly language (8086). These projects were done in a group (of 5) and dominated by 1-2 people. Needs to be more 1-1 focus.

2. Yes, combination of 3 hour lecture and lab courses (30% lab time).
3. No. Had lots of System Engineering classes that were not applicable. Did several (and very simple DOS based) Pascal programs.

4. No. Again because there was not enough web based application classes. For programming classes that were taken were enough lab classes.

5. NYU: Yes. UOP: Yes, using prerecorded sessions, and adequate.
	60% of interviewees’ said no and that more hands-on labs are needed.

	13
	How have you personally filled the education gaps to help you improve the background needed for your programming positions?
	1. Self-learning, Google, books.
BSCS taught him how to learn but not what should be learned.

2. MSDN and Internet resources. Reading books on programming.

3. Filled in gaps thru books and work experience.
4. Taking training offered by company (MSDN, technical reference books, and Google searches).
5. Taken classes: Object Orientated Analysis & Design, Cloud Computing all taken in 2011. Took certifications: IIBA (International Institute of Business Analysis) taken in 2011. Took certifications: CSQA taken in 2011.
	Self-learning, MSDN, books.

	14
	What recommendations would you make to University or College to improve the program and improve your readiness for an entry level programming position?
	1. Minimize some of the elective classes (history, physiology, physics I and II, Calculus I, II, and III, Religions, etc.). More group projects that simulate a real world project (handing out small projects in the group with a lead and then collaborating in the end to get it all working, weekly status reports, etc. to simulate corporate environment). Too much theory. More real world projects that are aligned to web application development. Standardize on IDE, tools and teach how to use a debugger. Interview students during program and align with more vertical interests (web application, mobile). Hire professors that are not out of touch with the corporate environment (professors are their for research and not to teach programming). Bring in industry experts to the classroom to inject corporate experience.

2. Having the capability to research efficiently. A few weeks in a class for how to do research.
3. Adapt more quickly to modern and multiple programming languages (C# and Java). Leverage free version of Visual Studio. Web technologies. Teach the importance code performance.

4. Maintaining software. More database classes. More Web application classes.

5. Teach how to comment/document/maintain their code. Teach how to test code (including system integration testing). Teach project planning, milestones, SDLC. Teach SOA.
	Recommendations:

1. Minimize some of the elective classes (history, physiology, physics I and II, Calculus I, II, and III, Religions, etc.).

2. More group projects. Projects should be aligned to real-world scenario and development process.

3. Standardize on tools using the same tools used in the industry. Leverage free tools offered by Microsoft for .NET.

4. Teach the importance of code maintenance and performance.

5. Teach more web application programming classes

6. Hire professors that have more real-world experience and not outdated. Bring in industry experts into the classroom.

	15
	What recommendations would you make to corporations to help you improve your continuing education in our field?
	1. Formal training plans together on current technology stacks. Align technical training with current project work.

2. Continue to push MSDN sponsored programming. Continue to offer tuition reimbursement.

3. Help donate resources and be more proactive with internship programs.

4. Offer more opportunities in technical courses. Need to get more involved in internships.

5. Incentives for new ideas.
	Recommendations:

1. More formal training.

2. Continue to push MSDN.

3. Continue to offer tuition reimbursement.

4. Be more proactive in internship programs.

	
	Question
	Responses
	Comments

	1
	Did you attend the Web Application Design 101 course?
	1. Yes

2. Yes

3. Yes

4. Yes

5. Yes
	Overwhelming yes.

	2
	Do you feel this class would be applicable to teach in a Computer Science program?
	1. Yes

2. Yes

3. Definitely

4. Most definitely
5. Definitely.
	Overwhelming yes.

What was good (and missing) is that this covered the entire development process.

Needed more details and labs.

Appendix E: Web Application Design Class Curriculum
The following was the curriculum outline for a Web Application Design class. The class was given to a software development team in a corporate training room environment using Microsoft PowerPoint(and an overhead projector.

· Course #1: Understand the Software Development Lifecycle (SDLC).

· Course #2: Understand how to decompose requirements during Requirements Analysis.

· Course #3: Understand the N-Layer Architecture.

· Course #4: Understand how to design the Presentation Layer. With companion lab.

· Course #5: Understand how to design the Business Services Layer. With companion lab.

· Course #6: Understand how to design the Data Access Layer. With companion lab.

· Course #7: Understand industry Best Practices.

· Course #8: Putting It All Together. With companion lab.
Appendix F: Implementation Plan
The following implementation plan was used to execute the selected solutions outlined in section Chapter IV: Solution Strategy of this paper.

	Week
	Task
	Notes

	1
	Setup and conduct the anonymous core technical skills Zoomerang Survey.
Complete Web Application Design training course #1 and course #2 with the software development team.
	Give the survey participants one week to respond to the survey.

	2
	Research the top 5 major university Computer Science program and Information Technology program.
Complete Web Application Design training course #3 and course #4 with the software development team.
	Assemble findings from the university Computer Science program and Information Technology program programs class curriculum and labs.

	3
	Setup and conduct the anonymous maintenance skills Zoomerang Survey.
Complete Web Application Design training course #5 and course #6 with the software development team.
	Assemble findings from the core technical skills survey. Give the survey participants one week to respond to the survey.

	4
	Contact the face-to-face interviewees’ to schedule an interview over the next two weeks.

Complete Web Application Design training course #7 and course #8 with the software development team.
	Assemble findings from the maintenance skills survey.

	5 - 6
	Conduct face-to-face interviews.
	

	7 - 8
	Assemble findings from the face-to-face interviews.

Assemble findings from training course
	

	9 - 12
	Write Action Research Project Paper
	

